Информация

Карта сайта

Эволюция arrow Эволюция arrow Интересные факты arrow Можно ли увидеть атом?
2013-12-02 07:17:35
Можно ли увидеть атом?
Печать E-mail
(0 голосов)

Долго не могли ученые избавиться от искажений в системе магнитных линз электронного микроскопа, размывающих изображение и ухудшающих остроту электронного зрения…

И все же атом удалось увидеть! Причем электронный микроскоп вынужден был уступить честь этого выдающегося успеха значительно менее сложному прибору — ионному проектору.

Еще в середине двадцатых годов нашего столетия ученые подсчитали, что для превращения атома на поверхности вещества в ион и «холодного» отрыва его от поверхности без какого-либо подогрева необходимо между исследуемым веществом и посторонним электродом создать электрическое поле напряженностью в сто миллиардов вольт на сантиметр! Но в те годы получение столь сильных электрических полей в эксперименте считалось невозможным.

В 1936 году немецкий ученый Э. Мюллер доказал, что если исследуемое вещество представляет собой тончайшую иглу, острие которой будет иметь радиус кривизны около 1000 ангстрем, то, создавая между иглой и расположенным напротив электродом разность потенциалов всего в несколько киловольт, можно получить на кончике острия очень большие напряженности электрического поля. Когда острие иглы, приготовленное путем электрохимического травления концов обычных проволочек, связано с отрицательным электродом внешнего напряжения, из него будут вылетать свободные электроны; если острие соединить с положительным электродом — оно станет источником потока ионов. На пути вылетающих частиц можно поставить экран, покрытый люминофором, и получить видимое изображение частиц вещества, испускаемых острием.

В этих приборах, получивших название автоэлектронных микроскопов или ионных проекторов, нет магнитных линз, каких-либо систем фокусировки и развертки изображения. Увеличение в таком компактном и изящном приборе определяется в основном соотношением между радиусами острия и светящегося экрана.

Около двадцати лет длилось усовершенствование этих внешне простых микроскопов — выбирался состав газовых смесей для заполнения пространства между электродами, подбиралась система охлаждения образцов, изучались разнообразные способы непрерывной подачи на острие атомов исследуемого материала. И вот в 1956 году появились научные публикации Э. Мюллера с уникальными фотографиями, позволяющими разглядеть отдельные атомы на выступах поверхности металлических образцов. Лишь в 1970 году, увеличив ускоряющее напряжение в электронном микроскопе до сотен и тысяч киловольт, ученые повысили зоркость и этого прибора до атомных размеров.

Физики продолжают совершенствовать приборы обоих типов. Созданы полезные дополнительные устройства для анализа тонких пленок и слоев на поверхности вещества с помощью электронных и ионных пучков.

В середине экрана автоэлектронного микроскопа исследователи сделали небольшое отверстие, пропустили в него часть сорванных с кончика острия ионов, разогнали их в магнитном поле и по величине отклонения от прямолинейного пути определили заряд и массу иона.

Направляя на поверхность образцов в электронном микроскопе не один электронный луч, а несколько, ученые смогли увидеть на экране изображение сразу всей кристаллической решетки в твердом теле. Электронные микроскопы нового поколения дали возможность японскому физику А. Хашимото проследить за движением атомов по поверхности вещества, а советским ученым Н. Д. Захарову и В. Н. Рожанскому — наблюдать смещения атомов внутри кристаллов.

Исследуя пленки золота, А. Хашимото сумел различить детали структуры кристаллов длиной в одну десятую ангстрема. Это уже во много раз меньше размера отдельного атома!

Теперь ученые могут перейти к исследованию мельчайших сдвигов во взаимном расположении отдельных атомов в самых больших и разветвленных органических молекулах, особенно в «молекулах жизни», передающих наследственные признаки живых существ от поколения к поколению, таких, как дезоксирибонуклеиновая кислота, чаще именуемая сокращенно ДНК.

В известном стихотворении О. Э. Мандельштама есть строчка: «Я и садовник, я же и цветок…»

Создавая все более совершенные инструменты для познания внешнего мира, физики все чаще обращаются к проникновению в тайны живого, понимая, что человек — самый сложный и непонятный цветок на свете.

 

http://www.thingshistory.com/

 
Поиск
 

 
Случайные
Рейтинг
Популярные
Статьи